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I. Introduction 

The Fermilab p source group has recently proposed a design 

for a high-luminosity p source.' To utilize electron cooling 

for p stacking in this design a large longitudinal phase space 

compression was required to match a maximum feasible space at 

production energy (340 ev-s 8 4.5 GeV) to the existing electron 

ring (2.7 ev-s 8 625 MeV). The candidate process for this com- 

pression, filter stochastic cooling,2 can only cool by modest 

factors (<10x) in a few seconds. Figure 1 summarizes current 

performance of stochastic-cooling systems. 

The solution to this dilemma was to cool by small factors 

(<10x) in stages.lJ3 Between each stage the cooling system's 

parameters are readjusted by deceleration such as to restore the 

initial conditions of fast cooling. A factor of 125 compression 

of longitudinal phase space in 6s of cooling was conservatively 

predicted. Since p deceleration (production energy to electron 

"freezer" energy) had always been a step in collection, such a 

stochastic cooling technique was a natural one to adopt. In con- 

trast, the CERN AA project requires no deceleration and conse- 

quently no large fast initial cooling step. 

Since each stage of cooling is to be identical to the, by 

now well-understood CERN approach, the Fermilab group was able to 

make their proposal with great confidence given the small number 
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of stages involved.3 $4 In this paper the idea of combining sto- 

chastic cooling with deceleration is developed to its logical 

(and therefore some what more speculative) limits. Some of the 

conclusions 

1. 

2. 

3. 

4. 

5. 

are: 

The overall cooling "rate" (F/AT) is optimized by 

cooling in the limit of an infinite number of 

cooling stages; 

In this limit filter cooling is not necessarily the 

technique of choice; 

A more natural technique is proposed; 

This new technique allows a far simpler beam pick-up 

to be used; 

An increased useful factor of transverse cooling is 

allowed "for free." 

II. Comparison of Filter Cooling With and Without Deceleration 

Throughout this paper I will only compare cooling schemes 

and therefore shall not attempt to calculate absolute cooling 

rates or times. The full equations describing stochastic cooling 

are nonlinear.4 I therefore avoid any numerical solutions. 

Although simplifications of the exact equations will arise I 

consistently apply them in such a way as to only emphasize the 

comparison sought. 

The model I use for filter momentum cooling is 

uJ(E at> = dN/de 

E = E - EO, 

(1) 
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where Eo is the nominal cooling energy. This equation is 

identical to the CERN Fokker-Planck description except for some 

simplifying 

1. 

2. 

3. 

Under 

evaluated. 

assumptions about the filter channel characteristics: 

The electronic channel gain is a constant throughout 

its bandwidth W. In particular g and K then become 

constants. 

All particles are assumed to be within a linear 

region of the filter response. This means 1/2W 

The filter and electronic channels are lossless and 

noiseless. Loss may be represented by a dependence 

c2 + const.) in the second term instead of &2.4 96 

these conditions the coefficients g and K may be 

In Appendix I, I derive (1) and hence K starting from 

a time domain point of view. It is shown that if this approach 

is handled with sufficient care5 s6 that after transformation to 

frequency domain the result is identical to the CERN derivations. 

Already (1) may be used to illustrate the advantage of 

decelerating [i.e., decreasing n s (ds/&o)/(dw/wo)] during the 

cooling process. The quantity of interest in longitudinal 

cooling is 0 & q (JE2$dE)1/2 where /$E z 1. Equation (1) may be 

integrated to give 6 : E 

‘j&++- g + 3/2 g2K {(1&2$2d,)/,E2} 
& 

(2) 

which implies a maximum instantaneous rate given K and the 

instantaneous distribution $(E,t): 
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g max = & (/E2$2d,)/uE2}-' 

= >> 1 =-;gmax. 
max 

(3) 

For fast cooling schemes, where we seek maximal rates, the 

cooling rate must continuously decrease as oE decreases since the 

ratio {(/~~$~dc:)/o 2)-1 continuously decreases. E Let F[E a,(final) 

/o,(initial)] be the net cooling factor achieved in AT. The best 

one can achieve with fixed K (fixed Eo) is to vary g during the 

cooling such as to satisfy (3). The appropriate description of 

this process is the function AT[F,g,,,(t)] which, since (1) is 

nonliner, is obtainable only via numerical solution. 

If we decelerate in stages during the cooling (in a manner 

detailed in Ref. l), then K is no longer a constant. It is 

proportional to n (see Appendix I), thus allowing the growth of 

(0 E2/ a2Q2dE) -l to be compensated for. Let us neglect for the 

moment (until section IV) the time required to (adiabatically) 

capture, decelerate, and debunch the beam. Then in the limit of 

an infinite number of cooling/deceleration stages the maximal 

cooling rate would be maintained at its initial value: 

-1 
1 

= 6K(t=o) 

(4) 
. 

=> AT(F, K) = (> 1 

I 

) LnF. 
E max 

In Appendix II I derive a lower bound for AT(F,g,,,) (the fixed 

EO time evolution): 

. 

AT(F, g,(t)> ) (> 1 1-l (F-1) (5) 
E max 
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which we compare to (4) in Fig. 2. The comparison also illus- 

trates the even lower performance situation of fixed gain filter 

cooling [AT(F, g = const.)]. The lower bound (5) corresponds 

to g decreasing in time as: 

(6) 

For the Fermilab precooler, where F b 125l the implication of the 

above comparison is illustrated in Fig. 3. 

The integrated form (2) of the Fokker-Planck equation dif- 

fers qualitatively from elementary deviations of the rate from 

time domain averaging of turn-to-turn corrections.7 Confusion 

has existed in reconciling the frequency domain and these ele- 

mentary time domain rates. Sacherer, for instance, has "derived" 

this naive time domain result starting from (1).8 Beyond linear- 

izing the kick in his derivation, Sacherer was forced to 

linearize the JI dependence itself. These original naive rate 

equations are too drastic a simplification of the physics. It is 

imperative to retain the q2 dependence as in (2). 

III. A New Momentum Cooling Method. 

If we choose continuous deceleration (CD) cooling then we 

must re-examine whether filter feedback is the highest perfor- 

mance technique. Keep in mind that the filter technique was 

invented as an improvement over the fixed momentum Palmer 

method.g The advantages were: 
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1. Allows the use of sum pickups of uniform 

(transversely) high sensitivity. 

2. Since the filter comes after initial low noise 

preamplification, electronic noise is suppressed 

near the filter gain zeros. Since the particles 

condense progressively closer to the zeros, the 

relevent part of the electronic noise spectrum1o is 

also amplified progressively less. If electronic 

noise were the only diffusion term source then, 

since its spectrum is flat and constant, we could 

cool indefinitely (with a perfect filter and at an 

ever diminishing rate) with constant electronic 

channel gain. 

3. Schottky noise is suppressed by the same mechanism 

as in 2. However this diminution of diffusion is 

more than offset by the central growth in particle 

density. 

But the filter cooling is by no means ideal. The growth of 

JE2Q2 /GE2 determines a falling g,,,(t) even for a case of 

continuously optimized g. It is just CD cooling which remedies 

this, for any cooling technique. 

There is another inherent disadvantage of filter cooling. 

Implicit in correct use of the Fokker-Planck approach is an 

averaging of the diffusion term over a time T long compared to 

the pair correlation time ~~~~~ This means that the diffusion 

term in (1) must be proportional to a "mixing factor," i.e., 

number of turns it takes to separate all initial particle 
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pairings by a (longitudinal) distance equal to the effective 

pickup length (= c/2 Weff, Weff = effective system bandwidth ). 

Now, we can always have a mixing factor = 1 (<=> "good mixing") 

by choosing n large enough. On the other hand, filter cooling 

depends upon a turn-to-turn correlation within the effective 

pickup width for its basic operation. In practice, mixing fac- 

tors 25 are apparently necessary.12 Thus the diffusion term is 

25 times ideal; the maximal cooling rate then being < l/5 ideal 

[JQ.. (3)1. 
I propose a new momentum-cooling technique which retains 

features 1 and 2 while allowing a mixing factor = 1. On the 

other hand, the advantage 3 is lost which I will argue leaves a 

net gain in performance. 

This new method is schematicized in 'Fig. 4b. The "signal" 

differentiating particle's momenta is derived from PU-KICKER 

transit time. Therefore I shall refer to it as the "transit 

time" ("TT" contrasted to "FT" for filter technique) method. In 

principle the parameter determining the coherent signal cor- 

rection (ET-I*) is independent of the mixing parameter n for TT 

cooling (=n') whereas only one parameter is available to optimize 

FT cooling (T-I * =n). 

Actually the two methods are quite similar. Let &oh'(t) be 

the axial electric field impluse produced at the kicker center by 

one particle (same for all particles). Let the axial electric 

field experienced by a particle (velocity = c) transiting the 

kicker with a constant potential applied to the kicker be 

proportional to f(t). The single particle self correction is the 

convolution of these functions 
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6c(TTT ) = e to CmQlh’(t) f(t-TTT) dt 
(7) 

The ideal filter cooling circuit is identical to the one just 

described for TT cooling with the addition of a stub line and 

with nIFT = 0 (Fig. 4a). Therefore its single particle self cor- 

rection is 

&E(T) J-1 {h’(t) - h'(t-T)} f(t)dt 

(8) 

But for nITT = nFT (7) and (8) are exactly proportional since the 

symmetry of the response dictates that /h'fdt = 0. This shows 

that these two cooling methods have basically identical friction 

terms. 

On the other hand, the diffusion terms are different. The 

influence of the jth particle on the ith is 

TT: 6~ ij(~) = e$ Ih' (t+Atij) f(t-Tj) dt (9) 

FT: 6~ ij(~) = -22 e 
4-r 

h'(t-rj)} f(t+At ij> dt (10) 

The second vanishes identically as T. J( Oc 2) + O* 
The diffusion 

term is the average of the 6s2 ij' One is lead to a a quadratic 

ci dependence for FT whereas the TT average is i independent. 

Maximum cooling rate is determined by the magnitude of the 

diffusion turn. The proper comparison of FT rate to TT rate is 
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the initial rate with ntTT = nFT, since the FT rate is maximum 

initially. Appendix I calculates these diffusion coefficients 

[the K of Eq. (1) and its equivalent for TT cooling] for an 

initial distribution all the particles of which lie within a 

linearizable region of the response. The result is 

KTT 1 5 5 -=-x-z 
KFT 2 2 ?f' (11) 

where the 5/2 comes from the averages and KTT is defined in (17). 

The comparison of initial rates [see Eq. (2) and its equivalent 

for TT cooling derived from (16)]: 

where MF g mixing factor. 

The parameter E* is the edge point of linear response in the 

feedback channel; approximately 6*= (~WB~'TO/EO)-~. To minimize 

the effect of electronic noise we must have the distribution 

maximally fill this response window. Choosing a square 

distribution $, then, with edges at +E* gives (see Fig. 5) 

I(E/E*)~$~~ dE/S +02dE = + (13) 

and 
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RTT 1 MFFT -=--* 
RFT 5 MFTT 

(14) 

AS noted above MFFT = 5 seems minimal so that RTT/RFT = 1 can be 

attained simply by having the PU-K separation in TT cooling be 

l/5 the cooler circumference (recall that nITT = nFT for this 

comparison). 

In fact the above comparison favors FT cooling in at least 

two respects. First, the deleterious effect of PU + K dispersion 

is neglected (nIFT = 0 is assumed). Second, filter losses and 

imperfections (e.g., non-multiple notch minima) are neglected. 

In fact, the practical advantage of requiring no notch filter may 

be the strongest point in favor of the TT cooling. The differ- 

entiation necessary could be a shorted stub, but its length 

is <<c/4W. 

In principle MFTT can be made <l by having sufficiently 

high n and having multiple cooling circuits, so that two cycles 

of momentum correction and mixing occur each turn. Because it 

requires turn-turn frequency correlation, no such improvement is 

possible with FT cooling. 

One may ask whether (14) is reasonable. An exact answer can 

be had only from examining the shape evolution of the density. 

For instance, a Gaussian profile which is 95% (2~s) inside the 

linearized response bounds gives the value of l/4 a Evidently 

a value somewhere between l/3 and l/6 is reasonable. 
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IV. Mode of Deceleration 

It is important to realize that the above analysis of TT 

cooling is for the limit of an infinite number of fixed-energy 

cooling steps. One must imagine an instantaneous deceleration of 

the beam between each of these steps. In practice, one must 

instead, smoothly decelerate the beam while cooling. The very 

important problem of stochastically cooling rf bunched beams I 

shall not directly analyze. In the last section of this paper I 

comment some more on this. Implicit at all other places is the 

assumption that a mode of rf capture can be devised that will not 

degrade the cooling effect. 

The problem of cooling bunched beams is not the only issue 

brought up with smooth deceleration. When a beam is decelerated 

the rotation frequency scale shrinks in proportion to n (the lat- 

tice is at all times below transition). In other words, decel- 

eration induces a pseudo-force into the time evolution of $. The 

sign of this force is as an anti-friction. Presumably the 

initial distribution in frequency space maximally fills the 

feedback circuit response bandwith (Fig. 5). Therefore the 

pseudo-force must be at least balanced by the cooling term or the 

beam will be lost from the notch. (This is very similar to the 

increase in rf voltage needed for capture with deceleration 

rate.) Since this crucial stability condition is manifest in 

frequency space, we write the Fokker-Planck equation and the 

distribution as functions of w = 21~fan~/E~. The effect (pseudo- 

force) of deceleration alone is 
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(15) 

where 

6 . 
-= 
w -Eo & Rn (&- ) (fixed E and fa). 

The Fokker-Planck equation for TT cooling (see Appendix I) is 

‘4 (w> = k {gwJ, - gzKT+ $$I 
+ pseudo force 

a = E {(g-s>m - g 2K~~@k'~ 

with S 3 G/w. 

(16) 

The criteria for fixing the deceleration rate I?0 will then be to 

maximize g and s with the constraint that the second moment of 

(16), dw/ow, = 0. The result is 

S max = c2 Key) -l (/jJ2dE/oE2)? (17) 

This is the same value that (16) would have yielded for 

yJuJmax = “Jug at fixed energy (i.e., no pseudo-force). Con- 

sistent with the approximations (second moment rates) we have 

been using, the above deceleration criteria gives 

bE/uE= 3/2 Smaxe (18) 

Thus a factor 3/2 difference exists between the infinite limit of 

step cooling and smooth deceleration. Notice that the 3/2 factor 

favors the smooth deceleration, changing Eq. (14) to 
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RTT=3 MFFT 
RFT 

--. 10 MFTT (14b) 

V, Corollaries to Transit Time Cooling 

Although maximum cooling rates are proportional to the 

effective bandwidth (Weff) of the feedback system, practical 

systems13 are limited to Weff ,< 200-300 MHz for three reasons: 

1. Poor response time PU and kicker cores (2 Weff = l/~) 

aggravated by the necessity of many closely packed cores 

for signal/noise enhancement. 

2. Low level electronic bandwidth limitations. Percentage 

flat bandwidth is the relevant criteria for (e.g. > 

amplifiers. 50-250 MHz represents a 500% bandwidth; 

this is considered very broadband. Noise figure and 

bandwidth trade off. 

3. Power Amplifiers. C. W. power and percentage bandwidth 

also trade off. 

The usual communications engineering answer to demand for 

larger Weff is "go to higher frequency." That is, the percentage 

bandwidth requirement relaxes. In a recent note I describe a 

waveguide cumulative pick up (particle velocity matched to phase 

velocity) which physically must operate at microwave frequency 

(4-5 GHz).14 There is still a bandwidth limitation imposed by 

the impossibility of matching phase and group velocities in such 

a structure; however, the waveguide is enormously simpler than 

hundreds of ganged cores. 
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But there is a fundamental reason that higher center 

frequencies cannot be used with filter cooling. The harmonic 

numbers operative in the PU signal would be so large that 

Schottky bands would overlap4 unless the ring n were unrealis- 

tically low. W ith transit time cooling we have seen that n can 

(should) be arbitrarily large; there is no restriction 

on Weff/fonm In other words, the TT method does not depend on 

the cyclical nature of the machine. 

Unfortunately there is as analogous problem if a microwave 

center frequency is carried on through to the kicker. This is 

illustrated in Fig. 5b. The problem is that the individual 

particle response (the function h(t) of the last section) is now 

snot monotonic. The analysis in Appendix I assumes this for the 

results on cooling previously discussed. Only a narrow band of 

particles which traverse the kicker within the central one-half 

cycle of Fig. 5b will be properly cooled. What we need is recti- 

fication just before the kicker (then a gap, see Fig. 6). Some 

advantages of such a microwave circuit are: 

1. Elimination of complex multiple PU and K structures. 

2. -10% bandwidth for Weff = 500 MHz @ 5 GHz. 

3. In the microwave regime it becomes possible to use GaAs 

Fet preamps which have the lowest noise figures of any 

broadband device. Their best performance is in the few 

GHz region. They can be cooled (LN2) for significant NF 

improvement. 

4. TWT power amplifiers could be used. Hopefully power 

levels can be achieved that eliminate the need for 

multiple kicker arrays. 
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An exact design for rectifying the high power rf remains an 

unknown. 

The Fermilab precooler design1 has a momentum spread limited 

aperture at the Ej injection energy, but at 200 MeV (freezer ring 

energy) it is limited by vertical betatron amplitude. It is 

therefore natural to consider ways of performing betatron cooling 

on the scale of a few seconds.15 Of course, accepting more 

transverse phase space from the p target (along with the same 

Ap/p Won't give an enhanced g accumulation rate since any sto- 

chastic (non-noise limited) cooling has its rate scaling 

as (Ntotal)-l . But betatron cooling would make the Fermilab 

scheme much more flexible; for instance, lower than expected 

target yields could be made up for. 

In the case of continuous deceleration, a certain rate of 

transverse cooling (vertical in particular but also horizontal in 

the zero dispersion straight sections) can be accomplished which 

does not suffer from one of the two technical problems causing it 

to be slow (compared to momentum cooling). At fixed energy the 

sensitivity of a transverse PU is proportional to the ratio of 

beam size to PU aperture. The sensitivity diminishes as cooling 

proceeds. Actually the equivalent occurrs in FT cooling as the 

distribution shrinks toward the notch zero but the signal-to- 

noise ratio is typically worse for transverse PU's so that this 

point is crucial. However, if the rate of transverse cooling is 

just such that (with deceleration now) the cooling balances the 

deceleration induced blow up, then the aspect ratio does not 

change. The increase in allowed initial vertical acceptance is 
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then equal to the factor of deceleration (- factor of 9 for the 

precooler). 

Since the mixing factor does not change during the deceler- 

ation cycle, such a factor of transverse cooling is then much 

more suited to the larger mixing required for maximal TT cool- 

ing. Fixed energy FT cooling is totally incompatable with simul- 

taneous transverse coding since the MF increases as (Ap/p)-l. 

VI. Comments on Cooling of Bunched Beams 

Naively, it seems that full rf capturing a beam would be 

fatal to momentum cooling since all particles would then have the 

same average rotation frequency (subharmonic of the rf fre- 

quency). However, mixing does occur because the synchrotron 

period is not constant at all points in the bucket and cooling is 

observed.16 Especially encouraging is that the initial cooling 

rate is apparently undiminished from the case of no rf if the 

bunching factor is small. This suits the situation of TT cooling 

where n is continually increased to balance the momentum cooling. 

This demonstration of bunched beam cooling also obviated an 

outstanding hardware question. That is, whether higher harmonics 

of the rf fundamental would inevitably leak into the super- 

sensitive PU channel. As long as the rf harmonic is low (e.g., 2 

for the Fermilab precooler) and the bunching factor small, 

spurious rf harmonics quickly die out (by h = 50 at ICE with rf h 

= 1).16 

Since the coherent cooling signal for FT cooling depends 

upon a correlation in instantaneous (turn-to-turn) period the 



-17- TIvI-942 
8035.000 

effect of rf on Q(E) evolution for any E is difficult to 

analyze. For TT cooling the effect is clear as long as the rf 

cavity is not inside the PU + K leg. Then there is no effect on 

the friction term. One must only worry about a possible diminu- 

tion in global mixing. It has been pointed out that the normal 

sinusoidal rf waveform is merely a convenience and it is possible 

to choose a waveform (e.g., triangular) which would enhance 

mixing via a momentum dependence of synchrotron period.17 
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APPENDIX I 

The form of Fokker-Planck equation (1) applicable to 

momentum cooling has been discussed in two places.'+ ,I8 Neither 

analysis relates change in $(&,t) to the dynamics of the indi- 

vidual particles so that evaluation of the F and D coefficients 

is not very transparent. In particular, F and D are expressed as 

integrals in frequency (response spectrum of the circuit). Ele- 

mentary derivations of the distribution rms evolution by aver- 

aging over single particle dynamics (therefore time domain) lead 

to:9 

6 a & {-g + ; Kg21 (Al) 

a form clearly not derivable from a nonlinear equation in JI [as 

WI. 
If, as I now show, the averaging leading to the second term 

in (22) is done correctly, one obtains expressions like (2) and a 

dynamically constructed expression for K* 

The calculation proceeds in the spirit of the F and D 

coefficient derivation by Ichimaru.ll The key element is the 

existence of correlation time ~2 >> To (2 revolution period 

which, for one feedback system, is the "collision time") which is 

the minimum time over which averages must be performed (i.e., 

M= ~2/Tg revolutions). A given particle is influenced only by a 

subset of N, = N T~~/T~ ('pU = l/2 Weff ) of the total number N. 

On the average, its closest neighbor within N, is spaced away in 

revolution frequency by df = (fOn/EO)(~E/Ns). 
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Therefore ~~~ TPU (df/fo)-l. For cooling to be considered as a 

Markov process, the correction must remain small on the ~2 time 

scale. That is, (cooling rate)-l >> TV. For typical parameters 

being considered for fast precoolers (2Weff To = 103, N = 5x107, 

s "good mixing") we have M = lo4 or ~2 FJ 10 ms which is small 
compared to maximal cooling rates expected of ,$ (100 ms)-I. The 
Fokker-Planck approach is thus justified. 

Using expressions (10-11) we can write the exact correction 

to the ith particle's momentum over the interval ~2: 

M N 
Ei(T2 > = L(O) - g c c Gijr, 

r=O j=l 
(A2) 

where 6 ijr denotes the kick given to i by j on the rth revol- 

ution. Let us calculate E i2 (~2 > - 'i 2(O) from this for the TT 

cooling case: 

Ei2(T2) - Ei2(0) = -2gcic c bijr+ g2 (C c 6ijr)2 

= -2gMbs i2 + g2M2( c 6 I2 ijl 
j 'j --0 'Ns (A3) 

2 = -2gNbs i + gw c 6 ijl 

= -2gMbEi2 + g2M2 
NE0 Tpu 

M  TdTT 

IjlCE) &ij2' 

In the second line we use the linearization: 
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= > 

6 ijr = e i: h"(t) f(t)dt 

(A4) 

If h"(t)f(t)dt. 

The sum in the diffusion term is reduced by noting that only a 

very narrow (M dependent) band of revolution frequencies near Ei 

will effect particle i after averaging M turns. This band con- 

tains (NEo~pU/MTon+T )$(E) particles. However, this subset is 

randomly distributed azimuthally, an average properly taken into 

account in 62 ij' Note that s.? is independent of i (and Ei). =J 
Integrating (A3) gives the second moment rate: 

with 

52= 
E -2 (G/To 10 E2 + To(G/To)2Na~ij2~~ $2(~)ds 

a 
= EOTpu /n&J 

To (dimensionless). 

(A5) 

It is tempting to immediately make the identification [via 

comparison with the second moment of (17)] 

g = (Go /T 1 

KTT = ;N&. iJ 

This result is correct, but fortuitous. There is an inconsist- 

ency in the derivation (A3) since the diffusion term is second 

order in the interaction (g2) but I have implicitly kept only 

first-order (g) terms in the friction term. It turns outI 
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that part of the second-order contribution from 5 5 6.. can be iJr 
identified with the diffusion coefficient and incorporated into 

the "diffusion term".20 This manipulation changes the form of 

the Fokker-Planck equation but not the coefficient ~~~~ 

The other neglected higher order part of C C 6.. has to do 
iJr 

with the "beam feedback."4 In order to heuristically analyze all 

these contributions we may imagine that the electric field kick 

seen by the ith particle is made up of:21 

(A61 

whereds = single particle coherent influence 0~ g 

tf PO1 = polarization field ith induces on the other particles 

OE g’ 

t6 f = the fluctuation field of the other particles 0~ g. 

L s alone gives the first term in (A5). & pol generates a beam 

feedback correction, which may be written as a gain diminution in 

the friction term.22 In higher orders one encounters products of 

the above fields. In second order the "tf x6 f" term contributes 

to the diffusion term (Q g2), while t pol x t5 o is the g3 

correction to the diffusion term due to beam feedback. An 

illuminating discussion of the beam feedback (originally given by 

Sacherer2) is in Ref. 4, while a canonical plasma-physics ap- 

proach is presented in Ref. 23 The situation is summarized in 

Fig. 7. Polarization induced on the beam by any particle will 

smear out by dispersion if the K + PU dispersion is great 

enough. One expects this to be the case with TT cooling. 
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The remaining task is to evaluate 6tjr (i independent and 

averaged over j): 

+T/2 
6 ij = e / h'(t 

0 -T/2 
- Ti)f(t + Atij)dt 

j=l 
(A7) 

0Re rf 
-iw(At 

= e wh(w)f(o)e 
ij-‘i> 

dw, 

where h(o), f(w) are the Fourier transforms of h(t), f(t). I 

simplify the mathematics by assuming that h(w) = f(w) (similar PU 

and K electrical response), and that h(w) is rectangular (see 

Fig. 5~). I now use the fact that (Atij - TV) is random in a sum 

over j (random azimuthal distribution) to convert the sum over j 

in S?. iJ 
to an integral over x E At.. - T... iJ iJ 

- 
62 =e2 

ij E // ww'h2(w)h2(w')e -i(w+O ' )Xdwdw 1 

To /2 = > / 62 dx = e2 -22~ // ww'h2(w)h2(w')6(w + W')dWdW' I 
-To 12 

(A81 

= 4Re2 e2 joD u2h4(,)dti. 
0 0 

However, there is a normalization equal to To/N for the x inte- 

gral. Therefore: 

- 
62 =S?IL$ 

ij To 2 IQ) &w2h4(w)dw 
0 0 

1 
ac e212 (2Weff)-l $, 

where the last line uses the rectangular approximation for h(w). 
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For FT cooling the evaluation, starting with (A3), of 6: is 

identical except that q-j is now E i dependent. Also c1 will be a 

different constant since it is n dependent and factors - a as in 

(11) will appear. Using the same linearization as in (A4) we 

have 

- 
cSij (FT) = 2 e2 ki ,i2 im &h4(.)dw 

(AlO) 
CC.Le2h2 2 =i 

TO O (2Weff12 
C2Weff 1-l +, 

where the proportionality constant is the same as in (A9). The 

factor T?J(~W)~ - E~/ET~, which one may absorb into the E. sum. 1 
The ratio of diffusion coefficients is thus 

Diffusion TT = 2 
Diffusion FT g {/ (E/E*)2q2(&)l-1 (All) 

Then, translated into the definition of K defined by (1) and (17) 

we obtain (13). Notice that the factor (2ToWeff)-1 in both (A9) 

and (AlO) make the diffusion terms proportional to N,, as 

expected. 

Finally, what is called "mixing factor" in (13) is exactly 

proportional to n; that is, MFTT/MFFT = nz/n$T = T-I'/T). 
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APPENDIX II 

Since the instantaneous rate (2) is constrained by 

/E~$~~E/Q 2 we can & seek an upper bound to (2) by finding a 

= /E2$2dE/(5 
2 

minimum for Wb) 
& l 

For oC2 fixed we have two 

constraints on 9min: 1) it is normalized and 2) from (7) we see 

that, 

9 (E=o) = g qJ(&=O). (A12) 

(Of course this experimental central density growth stops at some 

level due to circuit imperfections we ignore.) Unfortunately one 

can still choose distributions ~min such that @-to t-. This is 

reflected in the fact that the asymptotic solution to (1) is 

singular at the origin. Qualitatively this mathematical problem 

leads to unphysical distributions with large tails contributing 

to OE2 and sharp central spikes contributing to IE2$2dp. 

Examination of (7), however, shows the damping to be strongest 

out in the distribution tail. Therefore we insist on limiting 

the distribution width as well as oEe 

The minimization problem is now considerably 

behaved. A reasonable approximation for *min is 

Gaussian. This choice gives 

@(Gaussian) = 2 1 -= j.J(&=O) $. 
E 4J.Y 

better 

then a 

(Al3) 

For fixed go we find a solution for AT (F)[substituting (A13) 

into Eq.(7)] 
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1 F AT=--- - 

80 
Ln 2-F’ (AI4) 

Further it is easy to see that the rate is optimized by setting 

g,,,(t) E go o,(t)/o,(t). This gives a solution 

AT = 1 (F-l). 
$0 

(AI5) 

These bounds have been obtained using some rather drastic 

assumptions about the distribution shape. Finally one must study 

the exact nonlinear evolution of (7). However this qualitative 

flow is substantiated by some recent numerical computations by 
24 Crosbie who has simulated the various cases treated in this 

paper. I compare his results with the above estimates in Fig. 8. 
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